Functional mitochondria are required for O2 but not CO2 sensing in immortalized adrenomedullary chromaffin cells.

نویسندگان

  • J Buttigieg
  • S T Brown
  • M Lowe
  • M Zhang
  • C A Nurse
چکیده

Catecholamine (CAT) release from adrenomedullary chromaffin cells (AMC) in response to stressors such as low O(2) (hypoxia) and elevated CO(2)/H(+) is critical during adaptation of the newborn to extrauterine life. Using a surrogate model based on a v-myc immortalized adrenal chromaffin cell line (i.e., MAH cells), combined with genetic perturbation of mitochondrial function, we tested the hypothesis that functional mitochondria are required for O(2) sensing. Wild-type MAH cells responded to both hypoxia and increased CO(2) (hypercapnia) with K(+) current inhibition and membrane depolarization. Additionally, these stimuli caused a rise in cytosolic Ca(2+) and CAT secretion, determined by fura-2 spectrofluorimetry and carbon fiber amperometry, respectively. In contrast, mitochondria-deficient (rho(0)) MAH cells were hypoxia insensitive, although responses to hypercapnia and expression of several markers, including carbonic anhydrase II, remained intact. Rotenone (1 microM), a mitochondrial complex I blocker known to mimic and occlude the effects of hypoxia in primary AMC, was effective in wild-type but not rho(0) MAH cells. These data demonstrate that functional mitochondria are involved in hypoxia-sensing by adrenal chromaffin cells. We also show for the first time that, like their neonatal chromaffin cell counterparts, MAH cells are CO(2) sensors; however, this property is independent of functional mitochondria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of HIF-2alpha is dependent on mitochondrial O2 consumption in an O2-sensitive adrenomedullary chromaffin cell line.

During low O2 (hypoxia), hypoxia-inducible factor (HIF)-alpha is stabilized and translocates to the nucleus, where it regulates genes critical for survival and/or adaptation in low O2. While it appears that mitochondria play a critical role in HIF induction, controversy surrounds the underlying mechanism(s). To address this, we monitored HIF-2alpha expression and oxygen consumption in an O2-sen...

متن کامل

System-specific O2 sensitivity of the tandem pore domain K+ channel TASK-1.

Hypoxic inhibition of TASK-1, a tandem pore domain background K+ channel, provides a critical link between reduced O2 levels and physiological responses in various cell types. Here, we examined the expression and O2 sensitivity of TASK-1 in immortalized adrenomedullary chromaffin (MAH) cells. In physiological (asymmetrical) K+ solutions, 3 microM anandamide or 300 microM Zn2+ inhibited a strong...

متن کامل

The Differential Organization of F-Actin Alters the Distribution of Organelles in Cultured When Compared to Native Chromaffin Cells

Cultured bovine chromaffin cells have been used extensively as a neuroendocrine model to study regulated secretion. In order to extend such experimental findings to the physiological situation, it is necessary to study mayor cellular structures affecting secretion in cultured cells with their counterparts present in the adrenomedullary tissue. F-actin concentrates in a peripheral ring in cultur...

متن کامل

Chronic opioids regulate KATP channel subunit Kir6.2 and carbonic anhydrase I and II expression in rat adrenal chromaffin cells via HIF-2α and protein kinase A.

At birth, asphyxial stressors such as hypoxia and hypercapnia are important physiological stimuli for adrenal catecholamine release that is critical for the proper transition to extrauterine life. We recently showed that chronic opioids blunt chemosensitivity of neonatal rat adrenomedullary chromaffin cells (AMCs) to hypoxia and hypercapnia. This blunting was attributable to increased ATP-sensi...

متن کامل

Ontogeny of O2 and CO2//H+ chemosensitivity in adrenal chromaffin cells: role of innervation.

The adrenal medulla plays a key role in the physiological responses of developing and mature mammals by releasing catecholamines (CAT) during stress. In rodents and humans, the innervation of CAT-producing, adrenomedullary chromaffin cells (AMCs) is immature or absent during early postnatal life, when these cells possess 'direct' hypoxia- and CO2/H(+)-chemosensing mechanisms. During asphyxial s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 294 4  شماره 

صفحات  -

تاریخ انتشار 2008